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We obtain criterions for δ-subharmonic function to belong to the class of functions of finite
(γ, ε)-type in a half-plane. These criterions are formulated in terms of Fourier coefficients of a
function.

К. Г. Малютин, И. И. Козлова. Субгармонические функции конечного (γ, ε)-типа в полу-
плоскости // Мат. Студiї. – 2012. – Т.38, №2. – C.154–161.

Получены критерии принадлежности δ-субгармонической функции классу функций
конечного (γ, ε)-типа в полуплоскости. Эти критерии формулируются в терминах коэф-
фициентов Фурье функции.

1. Introduction. In this paper we use the Fourier series method for the study of properties
subharmonic functions. This method was introduced by L. A. Rubel and B. A. Taylor ([1]).
Further the Fourier series method was used by J. B. Miles ([2]), D. F. Shea, A. A. Kondra-
tyuk ([3]–[5]) and others.

We call a strictly positive continuous unbounded increasing function γ(r) on [0,∞)
a growth function. Let f be a meromorphic function in the complex plane, let Z(f) (W (f))
be the set of its zeros (poles), T (r, f) its Nevanlinna characteristic. A function f is called a
function of finite γ-type if there exist positive constants A and B such that T (r, f) ≤ Aγ(Br)
for all r > 0. We denote the class of such functions by Γ, and we denote by ΓE the class of
entire functions of finite γ-type. Below we use letters A, B, . . . to denote positive constants,
not necessarily the same throughout the paper. Let

ck(r, f) =
1

2π

∫ 2π

0

ln |f(reiθ)|e−ikθ dθ, k ∈ Z ,

be the Fourier coefficients of f . L. A. Rubel and B. A. Taylor ([1]) proved the equivalence
of the following three properties:
(1) f ∈ Γ;
(2) the sequence Z(f) (or the sequenceW (f)) has finite γ-density and |ck(r, f)| ≤ Aγ(Br),

k ∈ Z , for some positive A, B, and all r > 0;
(3) the sequences Z(f) and W (f) have finite γ-densities and

|ck(r, f)| ≤ A

|k|+ 1
γ(Br), k ∈ Z,

for some (not necessarily the same, but independent of k) positive constants A, B, and
all r > 0.
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Using the Fourier series method, J. B. Miles ([2]) solved the problem (which has been
remained unsolved for several years) of the representation of a meromorphic function f ∈ Γ
as a ratio of two entire functions from the class ΓE: Γ = ΓE/ΓE. Important results in these
directions were obtained in 80-th by A. A. Kondratyuk ([3]–[5]), who generalized the Levin-
Pflüger theory of entire functions of completely regular growth to meromorphic functions of
arbitrary γ-type.

The method of Fourier coefficients of δ-subharmonic functions in the plane was developed
further by P. Noverraz ([6]), Ya. V. Vasyl’kiv, K. G. Malyutin ([7]). These authors extended
of the results mentioned above to δ-subharmonic functions in the complex plane. At the
beginning of the 21th century, the first-named author of this paper extended the results of
L. A. Rubel, B. A. Taylor, J. B. Miles to δ-subharmonic functions in a half-plane ([8]).

In 2003, B. N. Khabibullin ([9]) introduced the classes of meromorphic in C functions of
finite (γ, ε)-type which are a generalizations of the class Γ. Yu. S. Protsyk ([10]) extended
the results of L. A. Rubel, B. A. Taylor, J. B. Miles to the classes of subharmonic functions
of finite (γ, ε)-type in Rn (n ≥ 2).

In the present paper we extend some of the mentioned results to functions of finite (γ, ε)-
type in a half-plane. First, we prove our results for δ-subharmonic functions. The passage to a
half-plane leads to complications that are due to the complicated behavior of a δ-subharmonic
function near the boundary. The difference from the plane case already seen in obtaining
tests for a δ-subharmonic function to belong to a fixed class. For instance, no generalization
or analogue of property (3) in Rubel–Taylor criterion is possible in a half-plane.

2. Main result. Let Jδ be the class of proper δ-subharmonic functions, and Jδ((γ, ε)) be
the class of proper δ-subharmonic functions of finite (γ, ε)-type in the upper half-plane (we
present definitions of these classes below). For v ∈ Jδ we set

ck(θ, r, v) =
2 sin kθ

π

∫ π

0

v(reiϕ) sin kϕdϕ, θ ∈ [0, π], k ∈ N.

The functions ck(θ, r, v) are called the spherical harmonics associated with a subharmonic
function v.

The main result of this paper is the following theorem.

Theorem 1. Let γ be a growth function, ε be a function of the class E , and let v ∈ Jδ.
Then the following two properties are equivalent:

(1) v ∈ Jδ((γ, ε));
(2) the measure λ+(v) (or λ−(v)) has finite (γ, ε)-density, and

|ck(θ, r, v)| ≤ Aγ(r +Bε(r)r)

(ε(r))α
, k ∈ N, (1)

for some positive α, A, B and all r > 0.

Here λ(v)=λ+(v)–λ−(v) is the complete measure corresponding to the function v.

3. Classes of functions in C+. In this paper we use terminology from [8], [11]. Let C+ =
{z : Im z > 0} be the upper half-plane. We denote by C(a, r) the open disc of radius r with
center at a, and by Ω+ the intersection of a set Ω with the half-plane C+ : Ω+ = Ω ∩ C+.
A subharmonic function v in C+ is said to be proper subharmonic if lim supz→t v(z) ≤ 0 for
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each t ∈ R. The class of proper subharmonic functions in C+ will be denoted by JS. Let
SK be the class of subharmonic functions in C+ possessing a positive harmonic majorant in
each bounded subdomain of C+. Functions from SK have the following properties ([11]).

(a) v(z) has non-tangential limits v(t) almost everywhere on the real axis and v(t) ∈
L1
loc(−∞,∞);

(b) there exists a signed measure ν on the real axis such that

lim
y→+0

∫ b

a

v(t+ iy)dt = ν([a, b])− 1

2
ν({a})− 1

2
ν({b}).

The measure ν is called the boundary measure of v;

(c) dν(t) = v(t)dt + dσ(t), where σ is a singular measure with respect to the Lebesgue
measure.

For a function v ∈ SK, following [11] we define the corresponding complete measure λ
by the formula

λ(K) = 2π

∫
C+∩K

Im ζdµ(ζ)− ν(K),

where µ is the Riesz measure of v. The measure λ has the following properties:

(1) λ is a finite measure on each compact subset K of C;
(2) λ is a positive measure outside R;
(3) λ vanishes in the half-plane C− = {z : Im z < 0}.

Conversely, if λ is a measure with properties (1)–(3), then there exists a function v ∈ SK
with complete measure λ. The collection of properties (1)–(3) will be denoted by {G} in what
follows; if, in addition, λ is a non-negative measure on R then we denote the corresponding
collection by {G+}.

The complete measure of a function v ∈ JS is a positive measure, which explains the
term “proper subharmonic function”.

Let us now introduce the class of proper δ-subharmonic functions Jδ = JS−JS. Note that
Jδ is the broadest class of δ-subharmonic functions in the half-plane for which one can define
the Nevanlinna characteristic. In fact, all Nevanlinna characteristics of a δ-subharmonic
functions are defined in terms of the corresponding measure. For instance, if a function is
δ-subharmonic in the entire plane, then one should consider its Riesz measure, while if it is
in the class Jδ, then one should consider its complete measure (whose definition takes into
account the boundary measure ν). The boundary behavior of an arbitrary function outside
the class Jδ is determined by some generalized function on the real axis that is not a measure.

Note that Jδ = SK − SK ([11]).
For a fixed measure λ let

dλm(ζ) =
sinmϕ

sinϕ
τm−1dλ(ζ) (ζ = τeiϕ), λm(r) = λm

(
C(0, r)

)
,

where sinmϕ
sinϕ

is defined for ϕ = 0, π by continuity.
The next relation is Carleman’s formula in Grishin’s notation:

1

rk

∫ π

0

v
(
reiϕ

)
sin kϕdϕ =

∫ r

r0

λk(t)

t2k+1
dt+

1

rk0

∫ π

0

v(r0e
iϕ) sin kϕdϕ; (2)
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in particular, for k = 1 we have

1

r

∫ π

0

v(reiϕ) sinϕdϕ =

∫ r

r0

λ(t)

t3
dt+

1

r0

∫ π

0

v(r0e
iϕ) sinϕdϕ (3)

for all r > r0.
We provide also another inequality, which is useful in what follows:∣∣∣λm(r)

∣∣∣ =

∣∣∣∣∫∫
C(0,r)

dλm(ζ)

∣∣∣∣ =

∣∣∣∣∫∫
C(0,r)

sinmϕ

sinϕ
τm−1dλ(ζ)

∣∣∣∣ ≤
≤ m

∫∫
C(0,r)

τm−1d|λ|(ζ) ≤ mrm−1|λ|(r). (4)

Functions v ∈ Jδ have representation in the half-disc C+(0, R)

v(z) = − 1

2π

∫∫
C+(0,R)

K(z, ζ)dλ(ζ) +
R

2π

∫ π

0

∂G(z,Reiϕ)

∂n
v(Reiϕ)dϕ, (5)

where G(z, ζ) is the Green function of the the half-disc, ∂G
∂n

is its derivative in the inward
normal direction, and the function K(z, ζ) = 1

Im ζ
G(z, ζ) is extended by continuity to the

points on the real axis.
Using the theory of elliptic functions (see, for instance, [12], Chapter VIII) one can obtain

expansions of the kernel in formulae (5), z = reiθ and ζ = τeiϕ:

G(z,Reiϕ) =


2
∞∑
m=1

1
m

(
r
τ

)m (
1− τ2m

R2m

)
sinmθ sinmϕ, 0 ≤ r < τ ≤ R,

2
∞∑
m=1

1
m

(
τ
r

)m (
1− r2m

R2m

)
sinmθ sinmϕ, 0 ≤ τ < r ≤ R.

(6)

∂G(z,Reiϕ)

∂n
= 4

∞∑
m=1

rm

Rm+1
sinmθ sinmϕ. (7)

4. Fourier coefficients of functions of class Jδ. The Fourier coefficients of a function
v ∈ Jδ are defined as usual ([7])

ck(r, v) =
2

π

∫ π

0

v(reiθ) sin kθdθ, k ∈ N.

Then ck(θ, r, v) = sin θck(r, v). From (2) we obtain the following representations for the
spherical harmonics for r > r0

ck(θ, r, v) = sin θαkr
k +

2rk sin θ

π

∫ r

r0

λk(t)

t2k+1
dt, k ∈ N, (8)

where αk = r−k0 ck(r0, v) (here r0 is a fixed number, for example r0 = 1).
Applying the formula of integration by parts to the integral in (8) we obtain

ck(θ, r, v) = sin θαkr
k +

rk sin θ

πkr2k0

∫∫
C+(0,r0)

sin kϕ

Im ζ
τ kdλ(ζ)+
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+
rk sin θ

πk

∫∫
D+(r0,r)

sin kϕ

τ k Im ζ
dλ(ζ)− sin θ

rkπk

∫∫
C+(0,r)

sin kϕ

Im ζ
τ kdλ(ζ), (9)

where ζ = τeiϕ.

5. Subharmonic and δ-subharmonic functions of finite (γ, ε)-type. For v ∈ Jδ let
v = v+ − v−, let λ be the complete measure of v and let λ = λ+ − λ− be the Jordan
decomposition of λ.

We set

m(r, v):=
1

r

∫ π

0

v+(reiϕ) sinϕdϕ, N(r, v):=

∫ r

r0

λ−(t)

t3
dt, T (r, v):=m(r, v)+N(r, v)+m(r0,−v),

where r0 is an arbitrary positive number and r > r0; one can take r0 = 1.
In this notation Carleman’s formula (3) can be written as follows

T (r, v) = T (r,−v). (10)

We assume that the growth function γ satisfies the condition

lim inf
r→∞

γ(r)

r
> 0. (11)

Let γ be the growth function. Let ε(r) be a non-increasing function on [0; +∞] such that
ε(0) = 1 and the inequality

ε(r + rε(r)) ≥ (ε(r))η (12)

is valid for all large enough r.
The class of such functions is defined by E .
Following N. B. Khabibullin, we will provide a definition.

Definition 1. Let γ be a growth function and ε ∈ E . A function v ∈ Jδ, 0 /∈ suppλv,
v(0) = 0, is called a function of finite (γ, ε)-type if there exist constants α, A and B > 0
such that

T (r, v) ≤ A

r(ε(r))α
γ(r +Bε(r)r).

We denote the class of such functions by Jδ((γ, ε)). Let JS((γ, ε)) be the class of proper
subharmonic functions of finite (γ, ε)-type.

Lemma 1. The class Jδ((γ, ε)) is a real vector space and JS((γ, ε)) is a cone.

Lemma 1 is a consequence of (10) and the inequality T (r,
∑
vj) ≤

∑
T (r, vj).

A positive measure λ on the complex plane is called a measure of finite (γ, ε)-type if there
exist positive constants α, A and B such that for all r > 0,

λ(r) ≤ Ar

(ε(r))α
γ(r +Bε(r)r). (13)

A positive measure λ has a finite (γ, ε)-density if there exist positive constants α, A and
B such that

N(r, λ):=

∫ r

r0

λ(t)

t3
dt ≤ A

r(ε(r))α
γ(r +Bε(r)r). (14)
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Lemma 2. If λ is a measure of finite (γ, ε)-density, then it is a measure of finite (γ, ε)-type.

Proof. We have

N(r(1 + ε(r)), λ) =

∫ r(1+ε(r))

r0

λ(t)

t3
dt ≥

∫ r(1+ε(r))

r

λ(t)

t3
dt ≥ λ(r)

r2(1 + ε(r))2
ln(1 + ε(r)).

The above inequality and the elementary inequality ln(1 + x) ≥ x/(1 + x) (x ≥ 0) yield

N(r(1 + ε(r)), λ) ≥ λ(r)ε(r)

r2(1 + ε(r))3
. (15)

Further, by inequality (12) we obtain

N(r(1 + ε(r)), λ)≤Aγ(r(1 + ε(r)) +Bε(r(1 + ε(r)))r(1 + ε(r)))

r(1 + ε(r))(ε(r(1 + ε(r))))α
≤Aγ(r + rε(r) + 2Brε(r))

r(1 + ε(r))(ε(r))αη
.

Inequality (13) for some constants α, A and B follows from the last inequality and (15).

6. Proof of the main theorem. Let us prove the implication 1) =⇒ 2). We shall need the
following lemma.

Lemma 3. Let v ∈ Jδ((γ, ε)). Then each of the measures λ+(v) and λ−(v) has finite (γ, ε)-
density, and the following inequality is valid∫ π

0

|v(reiϕ)| sinϕdϕ ≤ A

(ε(r))α
γ(r +Bε(r)r). (16)

Proof. The measure λ−(v) has finite (γ, ε)-density by the definition of the class Jδ((γ, ε)).
The fact that λ+(v) has finite (γ, ε)-density is a consequence of (10). The same formula yields∫ π

0

v±(reiϕ) sinϕdϕ ≤ A

(ε(r))α
γ(r +Bε(r)r).

This implies (16). The proof of the lemma is complete.

From (16) it follows that for a function v ∈ JS((γ, ε))

|ck(θ, r, v)| ≤
∫ π

0

|v(reiϕ)|| sin kϕ|dϕ ≤ Ak

(ε(r))α
γ(r +Bε(r)r). (17)

Formula (2) yields

ck(θ, r, v) =
ck(θ, r(1 + ε(r)), v)

(1 + ε(r))k
− 2rk sin kθ

π

∫ r(1+ε(r))

r

λk(t)

t2k+1
dt. (18)

By
k

(1 + a)k
≤ 2

a
, 0 < a ≤ 1,
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and (17), we can deduce an estimate of the first addend on the right-hand side of (18).∣∣∣∣ck(θ, r(1 + ε(r)), v)

(1 + ε(r))k

∣∣∣∣ ≤ Akγ(r(1 + ε(r)) +Bε(r(1 + ε(r)))r(1 + ε(r)))

(1 + ε(r))k(ε(r(1 + ε(r))))α
≤

≤ 2Aγ(r +B1ε(r)r)

(ε(r))α+1
.

(19)

By (4) and (13), find now an estimate of the second addend in the right-hand side of (18)∣∣∣∣∣2rk sin kθ

π

∫ r(1+ε(r))

r

λk(t)

t2k+1
dt

∣∣∣∣∣ ≤ 2krk

π

∫ r(1+ε(r))

r

|λ(t)|
tk+2

dt ≤

≤ Akrkγ(r +Bε(r)r)

(ε(r))α

∫ r(1+ε(r))

r

dt

tk+1
≤ Aγ(r +Bε(r)r)

(ε(r))α
.

(20)

Relation (1) now follows from (19) and (20).
The proof of the implication 1) =⇒ 2) is complete. Let us prove the implication 2) =⇒ 1).
Assume now that condition 2) from the theorem holds. Then it follows, by the inequality

|c1(r, v)| ≤ A
γ(r +Bε(r)r)

(ε(r))α

and formula (3), that if one of the measures λ+(v) and λ−(v) has finite (γ, ε)-density, then
the other measure also has finite (γ, ε)-density, and therefore |λ| has finite (γ, ε)-density. We
can now find an estimate of v+(z) using formula (5). By considering expansion (7) in the
Fourier series, we obtain∣∣∣∣ R2π

∫ π

0

∂G(z,Reiϕ)

∂n
v(Reiϕ)dϕ

∣∣∣∣ ≤
∣∣∣∣∣ 2π
∫ π

0

∞∑
m=1

rm

Rm
sinmθ sinmϕv(Reiϕ)dϕ

∣∣∣∣∣ =

=

∣∣∣∣∣
∞∑
m=1

( r
R

)m
cm(θ, R, v)

∣∣∣∣∣ ≤ Aγ(R +Bε(R)R)

(ε(R))α

∞∑
m=1

( r
R

)m
, z = reiθ.

Set R = r(1 + ε(r)). Then∣∣∣∣ R2π
∫ π

0

∂G(z,Reiϕ)

∂n
v(Reiϕ)dϕ

∣∣∣∣ ≤ Aγ
(
r + rε(r) +Br(1 + ε(r))ε(r + rε(r))

)(
ε(r + rε(r))

)α ×

×
∞∑
k=1

1

(1 + ε(r))k
≤
A1γ

(
r +B1rε(r)

)(
ε(r)

)α1

∞∑
k=1

1

(1 + ε(r))k
=
A1γ

(
r +B1rε(r)

)(
ε(r)

)α1+1 .

Since the function K(z, ζ) in (5) is positive, one has

v+(z) ≤ 1

2π

∫∫
C+(0,R)

K(z, ζ)dλ−(ζ) +
A1γ

(
r +B1rε(r)

)(
ε(r)

)α1+1 .

Now using the orthogonality of the system of polynomials {sin kθ}, k = 1, 2, ..., on the
interval [0, π] and formula (6), we obtain∫ π

0

v+(z) sin θdθ ≤ 1

2π

∫ π

0

{[∫∫
C+(0,r)

+

∫∫
D+(r,R)

]
K(z, ζ)dλ−(ζ)

}
sin θdθ+
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+
2A1γ

(
r +B1rε(r)

)(
ε(r)

)α1+1 ≤ 1

2

∫∫
C+(0,r)

sinϕ

Im ζ

τ

r
dλ−(ζ)+

+
1

2

∫∫
D+(r,R)

sinϕ

Im ζ

r

τ
dλ−(ζ) +

2A1γ
(
r +B1rε(r)

)(
ε(r)

)α1+1 ≤ 1

2r

∫∫
C+(0,R)

dλ−(ζ)+

+
2A1γ

(
r +B1rε(r)

)(
ε(r)

)α1+1 ≤ λ−(R)

2r
+

2A1γ
(
r +B1rε(r)

)(
ε(r)

)α1+1 .

Since the measure λ− has finite (γ, ε)-density, we have v ∈ Jδ((γ, ε)).
Theorem 2. Let γ be a growth function, ε ∈ E and let v ∈ JS. Then the following properties
are equivalent:
1) v ∈ JS((γ, ε));

2) |ck(θ, r, v)| ≤ Aγ(r +Bε(r)r)

(ε(r))α
, k ∈ N, for some positive α, A, B and r > 0.

This is an immediate consequence of Theorem 1, because the measure λ− vanishes for
functions in the class JS.
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